skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Skourtis, Dimitrios"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The wide adoption of Docker containers for supporting agile and elastic enterprise applications has led to a broad proliferation of container images. The associated storage performance and capacity requirements place a high pressure on the infrastructure ofcontainer registriesthat store and distribute images andcontainer storage systemson the Docker client side that manage image layers and store ephemeral data generated at container runtime. The storage demand is worsened by the large amount of duplicate data in images. Moreover, container storage systems that use Copy-on-Write (CoW) file systems as storage drivers exacerbate the redundancy. Exploiting the high file redundancy in real-world images is a promising approach to drastically reduce the growing storage requirements of container registries and improve the space efficiency of container storage systems. However, existing deduplication techniques significantly degrade the performance of both registries and container storage systems because of data reconstruction overhead as well as the deduplication cost. We propose DupHunter, an end-to-end deduplication scheme that deduplicates layers for both Docker registries and container storage systems while maintaining a high image distribution speed and container I/O performance. DupHunter is divided into three tiers: registry tier, middle tier, and client tier. Specifically, we first build a high-performance deduplication engine at the registry tier that not only natively deduplicates layers for space savings but also reduces layer restore overhead. Then, we use deduplication offloading at the middle tier to eliminate the redundant files from the client tier and avoid bringing deduplication overhead to the clients. To further reduce the data duplicates caused by CoWs and improve the container I/O performance, we utilize a container-aware storage system at the client tier that reserves space for each container and arranges the placement of files and their modifications on the disk to preserve locality. Under real workloads, DupHunter reduces storage space by up to 6.9× and reduces theGETlayer latency up to 2.8× compared to the state-of-the-art. Moreover, DupHunter can improve the container I/O performance by up to 93% for reads and 64% for writes. 
    more » « less
  2. Cloud object storage such as AWS S3 is cost-effective and highly elastic but relatively slow, while high-performance cloud storage such as AWS ElastiCache is expensive and provides limited elasticity. We present a new cloud storage service called ServerlessMemory, which stores data using the memory of serverless functions. ServerlessMemory employs a sliding-window-based memory management strategy inspired by the garbage collection mechanisms used in the programming language to effectively segregate hot/cold data and provides fine-grained elasticity, good performance, and a pay-per-access cost model with extremely low cost. We then design and implement InfiniStore, a persistent and elastic cloud storage system, which seamlessly couples the function-based ServerlessMemory layer with a persistent, inexpensive cloud object store layer. InfiniStore enables durability despite function failures using a fast parallel recovery scheme built on the auto-scaling functionality of a FaaS (Function-as-a-Service) platform. We evaluate InfiniStore extensively using both microbenchmarking and two real-world applications. Results show that InfiniStore has more performance benefits for objects larger than 10 MB compared to AWS ElastiCache and Anna, and InfiniStore achieves 26.25% and 97.24% tenant-side cost reduction compared to InfiniCache and ElastiCache, respectively. 
    more » « less
  3. Internet-scale web applications are becoming increasingly storage-intensive and rely heavily on in-memory object caching to attain required I/O performance. We argue that the emerging serverless computing paradigm provides a well-suited, cost-effective platform for object caching. We present InfiniCache, a first-of-its-kind in-memory object caching system that is completely built and deployed atop ephemeral serverless functions. InfiniCache exploits and orchestrates serverless functions' memory resources to enable elastic pay-per-use caching. InfiniCache's design combines erasure coding, intelligent billed duration control, and an efficient data backup mechanism to maximize data availability and cost-effectiveness while balancing the risk of losing cached state and performance. We implement InfiniCache on AWS Lambda and show that it: (1) achieves 31 – 96× tenant-side cost savings compared to AWS ElastiCache for a large-object-only production workload, (2) can effectively provide 95.4% data availability for each one hour window, and (3) enables comparative performance seen in a typical in-memory cache. 
    more » « less